QVE1900U

Flow Switch

Description

The QVE1900U Flow Switch is used in HVAC installations to monitor the flow of fluids in hydronic heating and cooling systems.

Product Number QVE1900U

Operation

There are three terminals inside the enclosure:

- Red = Common
- Blue = Normally Closed (NC)
- White = Normally Open (NO)

When there is no flow, or when the flow rate is insufficient to activate the switch, the circuit between the red and blue terminals is closed, and the circuit between the red and white terminals is open. When the flow rate increases to a level sufficient to activate the switch mechanism, the circuit between the red and blue terminals will open, and the circuit between the red and white terminals will close.

The switch activation points can be adjusted via the $+/$ - screw inside the enclosure.
Mechanical Design The unit consists of a base, paddle, and body with a 1" MNPT system connection.
The base houses the microswitch, electrical terminals, and adjusting screw (for switch-on/switch-off point), a paddle holder, and an opening for the cable entry. Four paddles are included that can be trimmed to accommodate different pipe diameters.

The cover is secured to the base with two screws.

Mechanical Design, Continued

Setting Element and
Connection Terminals

Figure 1.

- The unit is supplied with the switch point values set to the minimum (See Notes).

Notes

Engineering

Fitting

Installation

Commissioning

- Unit must be installed in a 1 -inch tee with FNPT threads. The recommended length is one inch.
- All data provided in the table of switching values are based on water at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$, and the use of T-junctions and horizontal piping.
- The flow sensor must be placed 10 straight pipe diameters from a previous transition (elbow or tee) and have 5 straight pipe diameters before the next transition.
- Install the tee into the piping prior to mounting the device. Then, make the electrical connections.
- Mount switch in the direction of flow (an arrow is stamped on the screw-in body 1" NPT).
- Use shorter paddles in conjunction with longer paddles for maximum rigidity and increased accuracy.
Observe all applicable codes and regulations.
- A higher switch-off value can be set by turning the adjusting screw clockwise.
- When mounting the flow switch in vertical piping, you must compensate for the weight of the paddles on the adjusting screw for the switch-on/off values.

Commissioning, Continued

Figure 2. Switching Point Setting Ranges.

Specifications

Functional data

Field of use
\quad Suitable media

Piping diameter

Type of switch
Contact rating
5 V
10V
12 V
24V
Adjustment of switching point
Setting range
Permissible medium temperature
Permissible operating pressure

All liquids (not suitable for ammonia)
1.25 inches (32 mm) to
8.00 inches (200 mm)

Microswitch with single-pole changeover, potential-free

AC	DC
0.07 A	0.05 A
0.1 A	0.05 A
0.15 A	0.07 A
$15 \mathrm{~A}(8 \mathrm{~A}$ inductive $)$	2 A

See Switching Value Table $-4^{\circ} \mathrm{F}$ to $248^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.120^{\circ} \mathrm{C}\right)$ (medium must be anti-freeze)
Maximum 160 psi

Specifications,

 Continued| Protective data | Degree of protection | IP 65 per EN $60529(\cong$ NEMA 4) |
| :--- | :--- | :--- |
| Environmental
 conditions | General environmental conditions
 Operation and storage | $-4^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$ |
| Norms and standards | Cconformity to
 Low-voltage directive
 Product standard

 Materials and colors | Housing base
 Cover |
| | Screw-in body 1" NPT | 2006/95/EEC |
| | Paddle | DIN EN 60335-1:2010/VDE0700-1 |

Wiring Diagram

Red $=$ Common
Blue = Normally Closed (NC)
White = Normally Open (NO)

Figure 3.

Dimensions

Cutting the Paddles

NOTE: Cut Paddle No. 4 as required (see below)

Line Size Inches (mm)	Inches (Millimeters)	Paddle No.	Paddle No. 4 Length
$1.25(32)$	$1-1 / 8 \times 1-5 / 16 \pm 1 / 16$ $(29 \times 34 \pm 1)$	1	$\mathrm{~N} / \mathrm{A}$
$1.50(40)$	$1-1 / 8 \times 1-5 / 16 \pm 1 / 16$ $(29 \times 34 \pm 1)$	1	
$2.00(50)$	$1-1 / 8 \times 2-3 / 8 \pm 1 / 16$ $(29 \times 60 \pm 1)$	$1+2$	
$2.56(65)$	$1-1 / 8 \times 2-3 / 8 \pm 1 / 16$ $(29 \times 60 \pm 1)$	$1+2$	
$3.00(80)$	$1-1 / 8 \times 3-1 / 2 \pm 1 / 16$ $(29 \times 89 \pm 1)$	$1+2+3$	
$4.00(100)$	$1-1 / 8 \times 3-9 / 16 \pm 1 / 16$ $(29 \times 91 \pm 1)$	$1+2+3+4$	$3.58(91 \mathrm{~mm})$
$5.00(125)$	$1-1 / 8 \times 4-5 / 8 \pm 1 / 16$ $(25 \times 117 \pm 1)$	$1+2+3+4$	
$6.00(150)$	$1-1 / 8 \times 5-5 / 8 \pm 1 / 16$ $(25 \times 144 \pm 1)$	$1+2+3+4$	$5.67(144 \mathrm{~mm})$
$8.00(200)$	$1-1 / 8 \times 6-9 / 16 \pm 1 / 16$ $(25 \times 167 \pm 1)$	$1+2+3+4$	$6.57(167 \mathrm{~mm})$

Figure 4. Dimensions in Inches (Millimeters).

Information in this publication is based on current specifications. The company reserves the right to make changes in specifications and models as design improvements are introduced. Product or company names mentioned herein may be the trademarks of their respective owners.
© 2013 Siemens Industry, Inc.
Siemens Industry, Inc.
Building Technologies Division
1000 Deerfield Parkway
Buffalo Grove, IL 60089-4513
USA

+ 1-847-215-1000
$+1-847-215-1000$

